SCALE-CCL: A Scalable Collective Communication Library
for Wide-Area Distributed Training

Jiaheng Xiong, Qiaolun Zhang, Paolo Medagliani, Michele Ferrero, Xiaomin Liu, Meng Lian,
Nicola Di Cicco, Baosen Zhao, Mémédhe Ibrahimi, Francesco Musumeci, Massimo Tornatore

December 15t 2025

Outline

Background
Motivation

System Model
Problem Statement
Heuristic Algorithm
Results

o s wN e

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

Background

CCL synthesizer . Border router
Across Data Center distributed Training: eneduing || PCstae\wansus Q) Router
. . @ DCswitch

1. Model sizes keep growing, and future workloads may exceed ,/—Rgu;{n'g‘;"L DC controller =\ & Hosts with GPUs

the capacity of a single datacenter scheduling’” /7DC status ‘
2. Compute and data resources are often distributed across

multiple geographic regions
3. Current CCL algorithms don’t adopt WAN scenario

Collective Communication Libraries (CCL): let multiple GPUs do routing and scheduling of chunks in a
coordinated way so they can work together as a single, unified training system

Ll LR BLLT N LA [LA [P P] EERY
— —_— = T T =
(i) AllGather (i) AllToAll (iii) AllReduce (sum)
e T —, L e~
[T BETE SN A A NZE 3NZ BNZE BNZ
D+ O+0]+00)

Fig 1: Example of Different Collective Communications 1]

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

Motivation: Dynamic Environment

Routing +

CCL synthesizer

DC status

scheduling

_.-"Routing +
scheduling

DC controller

DC status

WAN status O

Border router

Router

DC switch
Hosts with GPUs

The link rate varies over time in WAN.
e Traffic can surge from nearly idle to
full link capacity within seconds
e The fluctuation magnitude can reach
+100% or even higher!l]
The CCL synthesizer needs to respond
quickly
TECCL often responds at a timescale of
tens or even hundreds of seconds. (Can
not adopt WAN)

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

System Model (Different Transmission Type)

T~
S~
~
-
=<
-

<
-
-

~~
S~
~

=<
=<
-

(a) Store and Forward

[Nodeo |

B

(44

(14

[Node1 |

[Node2 |

S~
=~
~

=<
=<
-

==
=<
-

(b) Cut-Through

We model the transmission type of GPUs as Store and Forward

1. GPU-to-GPU transfers require receiving the entire chunk before
forwarding it to the next hop (End to End flows)

2. This creates an end-to-end delay that accumulates propagation (a) and
transmission time () on every hop

Transmission time: Tgr = h(a + B), his the number of hops

We model the transmission type of Routers as Cut Through

1. A router can start forwarding as soon as the first part of the chunk arrives
(packet level transmission from protocols)

2. End-to-end delay is dominated by propagation (a), with transmission time
(B) determined by the bottleneck link only once

Transmission time: Tcr = ha +

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

Problem Statement SOLITECNICO

MILANO 1863

= Network topology of multiple data centers
= Collective operation

" Chunk size

= Number of chunk

Given

Problem
statement Decide

= Routing of subchunks
= Scheduling of forwarding chunks in one node

Objective

Minimize the required to finish the collective

Constraints

Link latency
= Node can only send a chunk after receiving it

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25 6

System Model (Abstract Topology)

Border
L Router 2 |

Border
Router 0

Border
Router 3

Router 1

(a) Physical Topology (b) Logical Topology

» We abstract the physical topology to logical topology as Fig. (b)
» Different field perform different function:
1. Intra-DC field: leverages dense local connectivity to quickly diffuse subchunks among GPUs
2. WAN field: forwards subchunks across border routers as early as possible toward the
remote DC
3. Remote-DC field: completes the final dissemination once subchunks arrive at the
destination datacenter

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

Flow Chart of the Proposed Algorithm e

[eruo | [eru1| [eru2]| [epuo) [Grui] [eru2|
\

r-

Partition into subchunks

\ 4

Local load balance |+ Next event
Subchunk sorting ,’ﬁ S E_v;nTc ha'm]e' Y
:Transmission start/complete: “
n — I Reception start/complete /I
ransmission | N L L o o o e e e e e — - : :
: A a) Without subchunk b) With subchunk
Callective No o Each chunk will be divided into multiple sub-chunks, and

.. independent decisions will be made for each sub-chunk
finished

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25 8

Flow Chart of the Proposed Algorithm

Ve

~

Jee® Border Router 0
. . GPU o)
Partition into subchunks [S a8 }{ .

1 Border Router 1
_ J
v H Local load balance \

Local load balance | Next event { Border Router 0
GPU O.ueueozly ~
v Sub chunk: 0,1,2,3 o p
. o= = mm mm mm omm em b e e e == ~ U@]..
Subchunk sorting | { Event handle | 27| BerderRouterd

:Transmission start/complete :
. I Reception start/complete ! 1. Local-Only Decisions: Nodes assign subchunks based
Transmission D Gl ’ on their own state and neighbors’ known holdings.
2. Per-Neighbor Queues: Avoid redundant sends by
No tracking neighbor status and balancing load across
queues.
3. Scope: Load balancing applies to inter-DC/WAN links;
intra-DC uses broadcast only.

A\ 4

Collective
finished

Flow Chart of the Proposed Algorithm

sue® Border Router 0
GPU oY . y
Partition into subchunks [Sub chunk: 0,1,2,3 }ﬁ

Border Router 1
v “ Local load balance,

Local load balance [+ Next event 53| order Router 0
GPU PC /
I_ [Sub chunk: 0,1,2,3 | "5) \
y 17
: SRR R L U T — N g 71 Border Router 1
Subchunk sorting | { Event handle I - ’

| .. |
| Transmission start/complete; |ntra-DC network: broadcast
I Reception start/complete !

e leaian o T e R ; 2. GPU to border router link and border router to border router
link: load balancing
1. Local-Only Decisions: Nodes assign subchunks based on
No their own state and neighbors’ known holdings
2. Per-Neighbor Queues: Avoid redundant sends by tracking
neighbor status and balancing load across queues

\ 4

Collective
finished

Flow Chart of the Proposed Algorithm

(Q[o0]: 1)
GPU to Border Router Qi 12 Q4] 3,6
Partition into subchunks “Border Router 0 GPU3
4)

Q[2]:1,3

A 4

:

- Border Router 1
Next event (a) Before subchunk sorting

J N

Local load balance

I_ (Q[0]: 1)
v
D ~ L Q[1): 2)
i {

Subchunk sorting | { Event handle I Border Router 0
- I ()
:Transmlssmn start/complete a2):3
A 4 . _ J

. I Reception start/complete ! Border Router 1

Transmission N e e e e e e e e e e == / (b) After subchunk sorting

1. Before Sorting — Redundancy Exists

» Subchunks like 1 and 3 appear in multiple queues (e.g., Q[1] of BRO and Q[2] of
No BR1 both hold 1,3) = leads to redundant transmissions

2. Sorting — Resolve Duplicates Locally

» For each duplicate subchunk, choose the (sender, receiver) pair with lowest

estimated delay, and remove it from other queues
3. After Sorting — Unique Assignments
» Each subchunk now appears in only one queue

Collective
finished

Flow Chart of the Proposed Algorithm

Partition into subchunks

A 4

Local load balance

A

v

Subchunk sorting

\ 4

[Transmission]

Collective
finished

Next event

I Event handle :
:Transmission start/complete,

I Reception start/complete /I
\

GPU to GPU
[0, 1] [0]
GPU 1 GPU 1
[0, 2] [1, 3] [2] [1]

‘ GPU3 \ ‘ GPU3 \

(2,3] (3]
(a) Before subchunk sorting (b) After subchunk sorting

o For GPU to GPU, Subchunk sorting only performs the function
of preventing redundant sending (Sending several same
subchunks to the same receiver)

Numerical Result: Topology B

\H] L
Border
Router [GPU5 |
GPU'7\
50 GBps
a=0.7us
Fully Connected i2_5 ggzss Min Connected

1. Test topologies with different internal connectivities within the data center (connectivity = number
of edges in the current topology / number of edges in a fully connected graph): randomly
vary the number of internal edges in each DC, ensuring that each DC remains a connected graph
2. Vary the propagation delay of the links in the WAN

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

Numerical Result: Scalability Analysis

Table 1: Execution Time of Different Algorithm with 150km WAN Delay (Connectivity = 0.5)

Unit: s | SCALE-CCL | TE-CCL | Shortest Path | NCCL
Num.Subchunks] 1 2 4 8| 1 2 4 8\ 1 2 4 8] 1 2 4 8
1MB 0.04 0.08 0.22] 0.7504.61 35.24 1348.71 /x\N 0.08 0.18 0.39]0.95 0.104 0.233 [0.575
4MB 0.04 0.09 0.22] 0.76412.34 23.45 776.06[x 40.08 0.17 0.38] 0.96 0.107 0.240 0.610
16MB 0.04 0.09 0.29| 0.770ll1.96 22.75 705.71| x 0.08 0.17 0.36] 0.81 0.104 0.230 [0.580
64MB 0.05 0.09 0.23] 0.75411.82 22.95 676.27| x §0.08 0.17 0.34]0.79 0.101 0.221 |0.546
256MB 0.04 0.09 0.22| 0.7dlll2.01 17.22 707.71 \x40.08 0.17 0.32]0.77 0.100 0.217 |0.537

SCALE-CCL Shortest Path (SPH)
e Scheduling time stays below 1sin all cases (e.g., 1 * Runsinthe 0.3-1.0 s range across all settings
MB: 0.04 - 0.75 s) * Consistently slower than SCALE-CCL (e.g., 1 MB/ 8
* Grows smoothly and near-linearly with the subchunks: 0.95 s vs. 0.75 s)
number of subchunks NCCL
TE-CCL * Largely insensitive to chunk size (1-256 MB shows
e At 1 subchunk, takes 2-5 s depending on chunk small variation)
size * Increases with subchunks: from =0.05 s (1 subchunk)
* At 4 subchunks jumps to 600-1300 s, and fails to =0.55-0.61 s (8 subchunks)

entirely at 8 subchunks (more than 1 hour)
SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25

Numerical Result: Different WAN Delay i e

MILANO 1863

0 WAN delay = 50 ps (10 km) WAN delay = 250 ps (50 km) WAN delay = 500 ps (100 km) WAN delay = 1000 ps (200 km)

~— 5 I SCALE-CCL mmmNCCL

“g’ 10 msmTE-CCL mmmSPH

oy I\“ |||| 1] =l Nl i ““

B 8.9%

§10 ..I| ||II II ..II |||I III 10° ..II <iill Ill ..II IIII IIlI

o 256 64 256 64 256 64 256

Chunk S|ze (MB) Chunk 5|ze (MB) Chunk S|ze (MB) Chunk S|ze (MB)
Completion Time vs. chunk size under different WAN delay with 0.5 connectivity and 1 Subchunk per GPU

SCALE-CCL Shortest Path (SPH)
e Stays within 10% of TE-CCL across all WAN delays and ¢ Significantly slower than WAN-aware schemes

chunk sizes (max gap = 8.9%, avg = 3%) e Curves grow more steeply with WAN delay, showing
e At 250 ps and 256 MB: 90,252 us, only 0.3% slower poor robustness to higher propagation latency

than TE-CCL (90,002 us) NCCL
TE-CCL e Also degrades under WAN delay
* Achieves the lowest completion time, but only slightly ¢ Lacks WAN-aware path selection, so its completion time

better than SCALE-CCL (sub-10% gap everywhere) tracks propagation delay more closely

* Completion time increases with WAN delay similarly to
SCALE-CCL, but requires much higher scheduling

overhead (from Table 1)
SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25 15

Numerical Result: Different Subchunks T

MILANO 1863
- Num. Subchunk =1 Num. Subchunk = 2 Num. Subchunk =4
73' 5 [SCALE-CCL HEE SPH 5 5
£ 10 mmtEccL mmmNccL 10 10
el Lt L et
§1o3..l‘ 103..l‘ 103.“
© 1 4 16 64 256 1 4 16 64 256 1 4 16 64 256
Chunk size (MB) Chunk size (MB) Chunk size (MB)
Completion Time vs. chunk size under different number of Subchunks with 100 km WAN Delay and 0.5 connectivity
SCALE-CCL SPH
e Within 10-15% of TE-CCL across all chunk sizesand ¢ Much slower than SCALE-CCL (e.g., 16 MB & 2 subchunks:
subchunks 11,566 ps)
* More subchunks reduce completion time (e.g., at 16 * Improves with more subchunks but still far behind WAN-
MB & 2 subchunks: 5313 ps) aware methods
TE-CCL NCCL
* Best completion time in all settings * At 16 MB & 2 subchunks: 14,251 us (2.7 x slower than
e Also benefits from subchunking but with high SCALE-CCL)
synthesis cost (per Table 1) * Weak sensitivity to subchunks for medium/large chunks

due to fixed ring structure
SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25 16

Conclusion

* We presented SCALE-CCL, a WAN-aware collective communication
library that synthesizes AllGather schedules across geo-distributed
datacenters

* By combining subchunking, local queue—based decisions, and a
lightweight event-driven scheduler, SCALE-CCL reacts to WAN
variability while keeping schedule generation extremely fast

* Experiments show that SCALE-CCL maintains near-optimal completion
time while scaling to large topologies and high subchunk counts, making
WAN-aware collective scheduling practical for modern cross-DC training

