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Background
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1. Model sizes keep growing, and future workloads may exceed ,/—Rgu;{n'g‘;"L DC controller =\ & Hosts with GPUs

the capacity of a single datacenter scheduling’” /7DC status ‘
2. Compute and data resources are often distributed across

multiple geographic regions
3. Current CCL algorithms don’t adopt WAN scenario

Collective Communication Libraries (CCL): let multiple GPUs do routing and scheduling of chunks in a
coordinated way so they can work together as a single, unified training system
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Fig 1: Example of Different Collective Communications 1]
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Motivation: Dynamic Environment
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The link rate varies over time in WAN.
e Traffic can surge from nearly idle to
full link capacity within seconds
e The fluctuation magnitude can reach
+100% or even higher!l]
The CCL synthesizer needs to respond
quickly
TECCL often responds at a timescale of
tens or even hundreds of seconds. (Can
not adopt WAN)
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System Model (Different Transmission Type)
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(b) Cut-Through

We model the transmission type of GPUs as Store and Forward

1. GPU-to-GPU transfers require receiving the entire chunk before
forwarding it to the next hop (End to End flows)

2. This creates an end-to-end delay that accumulates propagation (a) and
transmission time () on every hop

Transmission time: Tgr = h(a + B), his the number of hops

We model the transmission type of Routers as Cut Through

1. A router can start forwarding as soon as the first part of the chunk arrives
(packet level transmission from protocols)

2. End-to-end delay is dominated by propagation (a), with transmission time
(B) determined by the bottleneck link only once

Transmission time: Tcr = ha +

SCALE-CCL: A Scalable Collective Communication Library for Wide-Area Distributed Training, Jiaheng, INET4Al '25



Problem Statement SOLITECNICO

MILANO 1863

= Network topology of multiple data centers
= Collective operation

" Chunk size

= Number of chunk

Given

Problem
statement Decide

= Routing of subchunks
= Scheduling of forwarding chunks in one node

Objective

Minimize the required to finish the collective

Constraints

Link latency
= Node can only send a chunk after receiving it
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System Model (Abstract Topology)
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(a) Physical Topology (b) Logical Topology

» We abstract the physical topology to logical topology as Fig. (b)
» Different field perform different function:
1. Intra-DC field: leverages dense local connectivity to quickly diffuse subchunks among GPUs
2. WAN field: forwards subchunks across border routers as early as possible toward the
remote DC
3. Remote-DC field: completes the final dissemination once subchunks arrive at the
destination datacenter
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Flow Chart of the Proposed Algorithm e
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Flow Chart of the Proposed Algorithm
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Flow Chart of the Proposed Algorithm
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Flow Chart of the Proposed Algorithm
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1. Before Sorting — Redundancy Exists

» Subchunks like 1 and 3 appear in multiple queues (e.g., Q[1] of BRO and Q[2] of
No BR1 both hold 1,3) = leads to redundant transmissions

2. Sorting — Resolve Duplicates Locally

» For each duplicate subchunk, choose the (sender, receiver) pair with lowest

estimated delay, and remove it from other queues
3. After Sorting — Unique Assignments
» Each subchunk now appears in only one queue
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Flow Chart of the Proposed Algorithm
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of preventing redundant sending (Sending several same
subchunks to the same receiver)



Numerical Result: Topology B
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1. Test topologies with different internal connectivities within the data center (connectivity = number
of edges in the current topology / number of edges in a fully connected graph): randomly
vary the number of internal edges in each DC, ensuring that each DC remains a connected graph
2. Vary the propagation delay of the links in the WAN
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Numerical Result: Scalability Analysis

Table 1: Execution Time of Different Algorithm with 150km WAN Delay (Connectivity = 0.5)

Unit: s | SCALE-CCL | TE-CCL | Shortest Path | NCCL
Num.Subchunks] 1 2 4 8| 1 2 4 8\ 1 2 4 8] 1 2 4 8
1MB 0.04 0.08 0.22] 0.7504.61 35.24 1348.71 /x\N 0.08 0.18 0.39]0.95 0.104 0.233 [0.575
4MB 0.04 0.09 0.22] 0.76412.34 23.45 776.06[ x 40.08 0.17 0.38] 0.96 0.107 0.240 0.610
16MB 0.04 0.09 0.29| 0.770ll1.96 22.75 705.71| x 0.08 0.17 0.36] 0.81 0.104 0.230 [0.580
64MB 0.05 0.09 0.23] 0.75411.82 22.95 676.27| x §0.08 0.17 0.34]0.79 0.101 0.221 |0.546
256MB 0.04 0.09 0.22| 0.7dlll2.01 17.22 707.71 \x40.08 0.17 0.32]0.77 0.100 0.217 |0.537

SCALE-CCL Shortest Path (SPH)
e Scheduling time stays below 1sin all cases (e.g., 1 * Runsinthe 0.3-1.0 s range across all settings
MB: 0.04 - 0.75 s) * Consistently slower than SCALE-CCL (e.g., 1 MB/ 8
* Grows smoothly and near-linearly with the subchunks: 0.95 s vs. 0.75 s)
number of subchunks NCCL
TE-CCL * Largely insensitive to chunk size (1-256 MB shows
e At 1 subchunk, takes 2-5 s depending on chunk small variation)
size * Increases with subchunks: from =0.05 s (1 subchunk)
* At 4 subchunks jumps to 600-1300 s, and fails to =0.55-0.61 s (8 subchunks)

entirely at 8 subchunks (more than 1 hour)
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Numerical Result: Different WAN Delay i e
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SCALE-CCL Shortest Path (SPH)
e Stays within 10% of TE-CCL across all WAN delays and ¢ Significantly slower than WAN-aware schemes

chunk sizes (max gap = 8.9%, avg = 3%) e Curves grow more steeply with WAN delay, showing
e At 250 ps and 256 MB: 90,252 us, only 0.3% slower poor robustness to higher propagation latency

than TE-CCL (90,002 us) NCCL
TE-CCL e Also degrades under WAN delay
* Achieves the lowest completion time, but only slightly ¢ Lacks WAN-aware path selection, so its completion time

better than SCALE-CCL (sub-10% gap everywhere) tracks propagation delay more closely

* Completion time increases with WAN delay similarly to
SCALE-CCL, but requires much higher scheduling

overhead (from Table 1)
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Numerical Result: Different Subchunks T
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SCALE-CCL SPH
e Within 10-15% of TE-CCL across all chunk sizesand ¢ Much slower than SCALE-CCL (e.g., 16 MB & 2 subchunks:
subchunks 11,566 ps)
* More subchunks reduce completion time (e.g., at 16 * Improves with more subchunks but still far behind WAN-
MB & 2 subchunks: 5313 ps) aware methods
TE-CCL NCCL
* Best completion time in all settings * At 16 MB & 2 subchunks: 14,251 us (2.7 x slower than
e Also benefits from subchunking but with high SCALE-CCL)
synthesis cost (per Table 1) * Weak sensitivity to subchunks for medium/large chunks

due to fixed ring structure
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Conclusion

* We presented SCALE-CCL, a WAN-aware collective communication
library that synthesizes AllGather schedules across geo-distributed
datacenters

* By combining subchunking, local queue—based decisions, and a
lightweight event-driven scheduler, SCALE-CCL reacts to WAN
variability while keeping schedule generation extremely fast

* Experiments show that SCALE-CCL maintains near-optimal completion
time while scaling to large topologies and high subchunk counts, making
WAN-aware collective scheduling practical for modern cross-DC training



