
LLM Serving on Heterogeneous Hardware

Mingxing Zhang @ KVCache.AI

https://github.com/kvcache-ai

Background: Large Language Models (LLMs)

Large Language Models (LLMs) are widely applied in industry and researched in academia.

Knowledge Q&A Content Creation

Code Generation Office Assistant

Challenge of Online Model as a Service System

More Data + Larger Model + Longer Context = Higher Intelligence

Data Source: SimilarWeb

Long input: Moonshot AI’s Kimi Supports 2 Million Characters

Input in March 2024, become a widely recognized app in China

Long output: DeepSeek release V3/R1 at Dec 2024,

Become a widely recognized app in global

Challenge of Online Model as a Service System

Data Source: SimilarWeb

More Data + Larger Model + Longer Context = Higher Service Loads

Frequent out of service

even though we scaling

out the inference cluster

for several times
A lot of throttling

Long input: Moonshot AI’s Kimi Supports 2 Million Characters

Input in March 2024, become a widely recognized app in China

Long output: DeepSeek release V3/R1 at Dec 2024,

Become a widely recognized app in global

Content

 Motivation for Heterogeneous LLM Serving

 Core Technologies of Mooncake

 Core Technologies of KTransformers

 Tutorial: Fine-Tune and Chat with Your

Customized Model Locally

1 Motivation for Heterogeneous LLM Serving

H800 Xeon SPR + 8 * DDR5-4800H20

80GB VRAM，3.3 TBps
~ 1 PFLOPS
> $ 10,000

8*64GB DRAM，8*40GB/s
< 20 TFLOPS

~ ¥60,000

96GB VRAM，4 TBps
~ 200 TFLOPS

~ $50,000

Hardware
Spec

Best
for

Allround,
especially for TFLOPS/$

Bandwidth/$ Capacity/$

!!! The price numbers are not accurate, just a demonstration!

LLM Inference

LLM
iteration 1

LLM
iteration 2

KV
Cache

What day is it
today?

Today

LLM
iteration 3

is

LLM
iteration 4

Friday ENDKV
Cache

KV
Cache

Prefill Decode

Time To First Token (TTFT) Time Between Tokens (TBT)

“What day is it today”

Prefill for Request I

day

What

today tomorrow

it

is

it

today

is

day

What

(5 tokens computed)

“What day is it tomorrow”

Prefill for Request II

(1 token computed)

What

dayday

What

is

it

is

it

tomor
row

tomorrow

it

is

day

What

LLM Inference: Prefix Caching

• KVCache can be shared across requests with the same prefix, reducing computation

KVCache Reuse

Different Hardware are Good at Different Dimension

H800 Xeon SPR + 8 * DDR5-4800H20

80GB VRAM，3.3 TBps
~ 1 PFLOPS
> $ 10,000

8*64GB DRAM，8*40GB/s
< 20 TFLOPS

~ ¥60,000

96GB VRAM，4 TBps
~ 200 TFLOPS

~ $50,000

Hardware
Spec

Best
for

Allround,
especially for TFLOPS/$

Bandwidth/$ Capacity/$

!!! The price numbers are not accurate, just a demonstration!

For Prefill! For Decode! For KVCache!

2 Core Technologies of Mooncake

Mooncake：A KVCache-centric Disaggregated Architecture

for LLM Serving

KVCache-

centric

Conductor

Decoding Instance

Paged KVCache
GPU/VRAM

Local

Scheduler

CPU/DRAM/SSD

Paged KVCache

GPU/VRAM

Local

Chunked

Prefill

Scheduler

Prefill Instance

Distributed KVCache Pool

CPU/DRAM/SSD

Distributed KVCache Pool

Paged KVCache

GPU/VRAM

Prefill Instance

CPU/DRAM/SSD

Distributed KVCache Pool

PP/SP
Local

Chunked

Prefill

Scheduler

Inter-node KVCache Transfer

Decoding Instance

Paged KVCache
GPU/VRAM

Local

Scheduler

CPU/DRAM/SSD

Distributed KVCache Pool

P
re

fi
ll

P
o

o
l

K
V

C
a

c
h

e

P
o

o
l

D
e

c
o

d
in

g

P
o

o
l

Cache-

aware

Prefill

Scheduler

KVCache

Balance

Scheduler

Load-

balance

Decoding

Scheduler

More：https://github.com/kvcache-ai/Mooncake

Mooncake (1): 在月之暗面做月饼，Kimi 以 KVCache 为中心的分离式推理架构

• _ The serving platform of Kimi

1. P/D disaggregation

architecture centered around

the distributed KVCache pool

2. Trading more storage of less

compute! Increase the

throughput of Kimi by 75%

3. Meet SLO guarantee

Moonshot AI + KVCache.AI @ Tsinghua

https://github.com/kvcache-ai/Mooncake
https://zhuanlan.zhihu.com/p/705754254
https://kimi.ai/

Kimi @ Moonshot AI

P&D Disaggregated Inference

• Avoid interference between prefill and decoding in a mixed batch

• Decouple resources and parallelism to improve MFU (Model Flops Utilization)

MFU

TB
T

Decode prioritizing

Prefill prioritizing

Chunked prefill[1]

P&D disaggregation

Better

Worse

[1] Agrawal et al. Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve (OSDI’24)

P&D Disaggregation V.S. Chunked Prefill

（a）
Conversa

tion

（b）
Tool

Use

◼ Better SLO control

P&D Disaggregation Becomes a Necessary

◼ Prefill and decode needs different parallelism strategy, e.g., DeepSeek V3/R1

KVCache Cache introduces High Challenges
to Storage System

• Each 1 token -> 2 * layers * hidden dimension = tens of KB KVCache

• Not only the size of KVCache is large, it also requires high transfer

bandwidth to avoid stall of GPU

10B+ Model

(GB)

100B+ Model
(Hundreds of

GB)

KVCache of

TB Model

(tens ofTB)
TB Model

(TB)

Reusable

KVCache

(Hundreds

of TB ~ PB)

KVCache Cache：Local or Global

◼ Cache hit ratio grows proportional to

the size of the cache

 Different scenarios has different

settings

 Overall, we need PB-level cache that

exceeds to size of a single machine

Will be open sourced soon!

• Pooled memory as KVCache cache

• Independent to specific inference

engine

• Optimized for multi-NIC scenario

Mooncake Store：Distributed Multi-layer KVCache Cache

• Key of KVCache Cache：Large size and bandwidth
Utilize high performance connection like (GPUDirect) RDMA/Storage

Mooncake Store: External Integration

Storage

Resource

Third-party

Memory

StorageRemote mem (Remote) SSD

Bare-metal

Storage

Resource
Local mem

Mooncake Transfer Engine

Mooncake Store BatchTransfer API

Managed Store (master-slave) P2P Store (client-only)

Memory Read/Write

Zero-copy Object Put/Get

vLLM, and other inference engine Megatron, training

Mooncake

Store

Inference

Engine

Evaluation: Effective Request Capacity

 Effective request capacity: Number of requests that meet the latency requirements

 Achieve up to a 498% increase in effective request capacity compared to vLLM, vLLM with

prefix caching and with chunked prefill

Better Better Better

 Cache hit rate: global cache > local cache

 Save 29% - 61% on GPU computation costs

Evaluation: GPU Computation Cost

Mooncake – Open Sourced and Build with the Community

2024.3 Kimi went viral for its long-context

capabilities, using Mooncake to handle surging traffic

2024.11 Mooncake open-sourced;

adopted by Alibaba and Ant Finance

2024.6 Mooncake tech report sparked

wide industry discussion

From flagship applications To industry-wide adoption

kvcache-ai/Mooncake -- An open-source initiative co-launched by Moonshot AI and Tsinghua University,

with collaboration from various large model and infrastructure providers

and more …

2025.2 USENIX FAST

Best Paper Award

USENIX FAST2025 Best Paper

Used in Dynamo, the distributed inference

system highlighted at GTC 2025 Keynote

https://github.com/kvcache-ai/Mooncake

Mooncake – Adopted/Collaborated with Other Famous Communities

NVIDIA Dynamo

• Spotlighted by Jensen

Huang at GTC 2025

Keynote

• Its architecture is inspired

by Mooncake, with

explicit acknowledgments

• One of the most widely used

inference engines, adopted by

major cloud providers

• Its distributed inference is

built on Mooncake

• Inference engine of xAI, widely

used in DeepSeek inference

• Distributed architecture was co-

developed with Mooncake

Key to KVCache

📚 Store More

⚡ Transfer Fast

✅ Easy to Use

• Mooncake Transfer Engine

• End-to-end zero-copy

• Elastic, Shared, and Multi-layer KV Cache

• Memory Allocator Optimized for LLM Inference

• Extensive and user-friendly APIs

High-performance distributed

KV cache storage

Transfer Fast: Mooncake Transfer Engine

• Key features

• Topology-aware path selection

• Multi-NIC pooling

• Supports multiple protocols

and provides unified interfaces.

• Multi-language APIs

Lightening fast over RDMA

• 40 GB KVCache (128k tokens, LLaMA3-70B)

• 87 GB/s @ 4×200 Gbps, RoCE

• 190 GB/s @ 8×400 Gbps, RoCE

Store More: Elastic Shared Multi-layer KV Cache

• Key features

• Distributed KV cache sharing: storing

one and usable by all

• Dynamic resource scaling: dynamically

adding and removing store nodes

(startup in <80s for 500GB memory and

8 RDMA NICs)

• Multi-layer storage (WIP): offloading

cached data from RAM to SSD

Extensive APIs, Easy to Use

Put/Get APIs

• Put/Get single object

• Batch Put/Get

• (Batch) Zero-copy Put/Get: recommended

• (Batch and zero-copy) Put/Get from/into

multi-parts

Configurable KV cache placement

• Replica number

• With soft pin

• Preferred segment

Hello world example

How to Integrate with SGLang？ - HiCache

HiCache by Zhiqiang, et. al.

Page First Layout

SGLang + Mooncake

• 52.3k input tps

• 22.3k output tps

• per node

• 3 Prefill + 9 Decode

• DeepEP + EPLB

• Double Batch Overlap

SGLang + HiCache + Mooncake

Thanks：

Mooncake P2P Store: Faster Checkpoint/KVCache Restore in RL

Fast Checkpoint Transfer

https://github.com/MoonshotAI/checkpoint-engine/

The Rise of Mooncake

 Transfer Engine as the core

 Disaggregated LLM Serving

 Reinforcement Learning

TCP
Transport

RDMA Transport MultiNode
NVLink

Transport

CXL/SHM
TransportRoCE IB eRDMA

Batch Transfer Interface

Mooncake Transfer Engine (TE)

Mooncake Store

Train/Inference Workflow

Python APIsC/C++ APIs Go APIs Rust APIs

Ascend
HIXL

Transport

Non-volatile memory (NVM)

PCIePCIeDRAM
RDMA

NIC RDMA

Non-volatile memory (NVM)

DRAMNVMe SSDVRAM
NVLink

CPUCPU

CPUGPU CPUGPU

CPUCPU
RDMA

NIC
CPUCPU DRAM

NVM
DRAM CPUCPU CPUCPU

NVIDIA
Dynamo

NVIDIA NIXL

Checkpoint
Engine

and more …

Heterogeneous GPU Interconnects

CPU CPU
UPI

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

DRAMDRAMDRAM DRAMDRAMDRAM

PCIe Switches PCIe Switches

N
IC

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

G
P

U

PCIe Switches PCIe Switches

NVLink
Switches

N
V

M
e

SS
D

RDMA Network

G
P

U

N
IC N
IC N
IC N
IC

G
P

U
G

P
U

G
P

U

PCIe Switches

CPUCPU

DRAMDRAM
NVMe-of
Attached

SSD

Node 1 Node 2

 Multiple paths coexist within the same cluster

NVLink

GPU-Direct RDMA

GPU-Direct
Storage

Hidden Risks of Mooncake TE

 The Imperative Path Selection Paradigmauto engine = new TransferEngine();
engine.installTransport(“rdma”, args);

auto id = engine.allocateBatch();
engine.submitTransfer(id, reqs);
while (true) engine.getStatus(id, st);
engine.freeBatch(id);

◎made static binding decisions once at
startup

◎ executed a fixed, state-blind path
scheduling policy

◎ executed fragilely, and lacks mechanisms
to detect & bypass unavailable paths

CPU
UPI

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

DRAMDRAMDRAM

PCIe Switches PCIe Switches

NVLink
Switches

N
V

M
e

SS
D

RDMA Network

G
P

U

N
IC N
IC N
IC N
IC

G
P

U
G

P
U

G
P

U

PCIe Switches

CPUCPU

Challenges from Imperative Path Selection

 Static Binding

 Creates communication silos

Physical
Node

Data Plane
Path

Different workloads, different transports Different hardware, different transports

G
P

U

N
IC

RDMA Network

G
P

U

N
IC

With GPU-Direct

G
P

U

N
IC

RDMA Network

G
P

U

N
IC

Without GPU-Direct
(e.g., GTX series)

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

G
P

U

N
IC

RDMA NetworkGDU Direct RDMA

NVLINK

GDU Direct RDMA ???

Challenges from Imperative Path Selection

 State-Blind Scheduling

 Increases latency and wastes bandwidth

NIC0

NIC1

NIC2

NIC3

Topology matrix snippets:
“cpu:0”: {[NIC0, NIC1, NIC2, NIC3], […]}

A transfer request with 2560 KB
40 slices in total (each 64KB)

Slices from concurrent requests

Transfer Latency

Slices from this request

Challenges from Imperative Path Selection

 Fragile Execution

 Requires manual intervention and heavy troubleshooting

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

RDMA Switches

➢ What if a single RDMA fabric failed?
Process 1 Process 2

➢ What if a single process crashed?

➢ What if the RDMA switch failed?

Control Plane
Plugins

TENT: Transfer Engine NT

 Goal: Make all transports first-class citizens

Transfer Engine APIs

NIXL Mooncake StorevLLM SGLang Dynamo LMCache Checkpoint Engine ...

Orchestration

Routing Staging

Error Handling

Unified Segment Abstraction

Buffers Devices

Topology

Transport Plugins (load all if possible)

P2P etcd

Redis HTTP

Heterogeneous GPU Interconnects

RDMA (with GDR/eRDMA)

HIXL

NVLink MNNVL

SHM/CXL

TCP

GDS io_uring ...

RoCM

Plugin Loaders

Discover

(New Technology)

Features of Mooncake TENT

Dynamic Orchestration

◎Unified Segment Abstraction

◎Application-Oblivious Topology
Discovery

◎Dynamic Per-Request
Orchestration

Adaptive Slice Spraying

 Latency Prediction based NIC
Selection

◎Cross-Process Fairness

Resilient Self-Healing

◎ Link-Level Resilience

◎ Transport-Level Resilience

Unified Segment Abstraction

2025/11/30 40

location: cpu:0

tier 1 devices: [mlx5_0, …]

tier 2 devices: []

tier 3 devices: [mlx5_4, …]

location: cpu:0

tier 1 devices: [mlx5_0, …]

tier 2 devices: []

tier 3 devices: [mlx5_4, …]

address

length

location: cpu:0

transports: [nvlink, rdma, tcp]

transport
specific
data

nvlink/handle

rdma/rkeys
…

address

length

location: cpu:0

transports: [nvlink, rdma, tcp]

transport
specific
data

nvlink/handle

rdma/rkeys
…

Logical View cpu:0 cpu:1 cuda:0

Metadata View name: node050:12345

type: memory

topology

buffers

devices

address

length

location: cpu:0

transports: [nvlink, rdma, tcp]

transport
specific
data

nvlink/handle

rdma/rkeys
…

name: mlx5_0

type: rdma

transport
specific
data

rdma/{lid,gid}
…

name: mlx5_0

type: rdma

transport
specific
data

rdma/{lid,gid,props}

…

location: cpu:0

tier 1 devices: [mlx5_0, …]

tier 2 devices: []

tier 3 devices: [mlx5_4, …]

0 UINT64_MAX

This segment can be referred as
the engine’s host and port

Buffers

Devices

Topology

(applicable to all transports)

Application-Oblivious Topology Discovery

 Step 1: Probe hardware information

 List of memory/NIC devices

 Their NUMA affinity, PCIe Bus ID

 Capabilities: bandwidth, direct-access, etc.

MEM:

cpu:[0-1],

cuda:[0-7]

NIC:

mlx5_[1-8]
2025/11/30 41

CPU CPU
UPI

cu
d

a:
0

m
lx

5
_5

cu
d

a:
1

m
lx

5
_6

cu
d

a:
2

m
lx

5
_7

m
lx

5
_8

DRAMDRAMDRAM
cpu:0

DRAMDRAMDRAM
cpu:1

PCIe Switches PCIe Switches

m
lx

5
_1

cu
d

a:
4

m
lx

5
_2

cu
d

a:
5

m
lx

5
_3

cu
d

a:
6

m
lx

5
_4

cu
d

a:
7

PCIe Switches PCIe Switches

ss
d

:0

cu
d

a:
3

Application-Oblivious Topology Discovery

 Step 1: Probe hardware information

 Step 2: Maps NICs for each MEM

 Tier 1: NIC(s) with the shortest PCIe hop

 Tier 2: same NUMA but not in tier 1

 Tier 3: cross NUMA CPU CPU
UPI

cu
d

a:
0

m
lx

5
_5

cu
d

a:
1

m
lx

5
_6

cu
d

a:
2

m
lx

5
_7

m
lx

5
_8

DRAMDRAMDRAM
cpu:0

DRAMDRAMDRAM
cpu:1

PCIe Switches PCIe Switches

m
lx

5
_1

cu
d

a:
4

m
lx

5
_2

cu
d

a:
5

m
lx

5
_3

cu
d

a:
6

m
lx

5
_4

cu
d

a:
7

PCIe Switches PCIe Switches

ss
d

:0

cu
d

a:
3

:{

[,],

[,],

[, , ,]}

cuda:0

mlx5_5 mlx5_6

mlx5_7 mlx5_8

mlx5_1 mlx5_2 mlx5_3 mlx5_4

…………….

…………….

Application-Oblivious Topology Discovery

 Step 1: Probe hardware information

 Step 2: Maps NICs for each MEM

 Step 3: Load transports

 Runtime support and transports can be dynamic libraries

 They can be loaded on runtime (e.g., if CUDA is enabled)

2025/11/30 43

CPU CPU
UPI

cu
d

a:
0

m
lx

5
_5

cu
d

a:
1

m
lx

5
_6

cu
d

a:
2

m
lx

5
_7

m
lx

5
_8

DRAMDRAMDRAM
cpu:0

DRAMDRAMDRAM
cpu:1

PCIe Switches PCIe Switches

m
lx

5
_1

cu
d

a:
4

m
lx

5
_2

cu
d

a:
5

m
lx

5
_3

cu
d

a:
6

m
lx

5
_4

cu
d

a:
7

PCIe Switches PCIe Switches

ss
d

:0

cu
d

a:
3

RDMA (with GDR)

NVLink

TCP

Ascend NIXL

Dynamic Per-Request Orchestration

 Decide transports for each request using the Unified Segment

 Local address

find local MEM type

find local installed transports

2025/11/30 44

Opcode

Local address

Target Segment ID

Target Offset

Length

Opcode

Local address

Target Segment ID

Target Offset

Length

Opcode

Local address

Remote segment ID

Remote offset/addr

Length

U
se

r
R

eq
u

es
t

Orchestration

Routing

Staging

RDMA (with GDR)

NVLink

TCP

◎Remote segment ID & offset/address

find remote MEM type

find remote installed transports

Prefer to use a transport with the highest
speed, and supported by both sides

Features of Mooncake TENT

Dynamic Orchestration

◎Unified Segment Abstraction

◎Application-Oblivious Topology
Discovery

◎Dynamic Per-Request
Orchestration

Adaptive Slice Spraying

 Latency Prediction based NIC
Selection

◎Cross-Process Fairness

Resilient Self-Healing

◎ Link-Level Resilience

◎ Transport-Level Resilience

Telemetry-Driven Adaptive Scheduling

 How to reduce transfer latency and avoid bandwidth waste

 Predict: select local-remote NIC pair based on historical telemetry

 Feedback: use measured latency to update prediction parameters

NIC0

NIC1

NIC2

NIC3

Topology matrix snippets:
“cpu:0”: {[NIC0, NIC1, NIC2, NIC3], […]}

A transfer request with 1 GB
16384 slices in total (each 64KB)

Transfer
Completed

Transfer
Started

Static path selection → suboptimal performance in
heterogeneous environments

Local NIC Selection

 Latency estimation

 𝐿𝑝𝑟𝑒𝑑 𝑁𝐼𝐶𝑘 =

𝛽1,𝑘
𝐼𝐹𝑘+𝑃𝑘∗𝑆

𝐵𝑊𝑘
+ 𝛽0,𝑘

 𝐼𝐹𝑘 : NIC inflight bytes

 𝑆 : Slice length

 𝑃𝑘 : Penalty factor (e.g., higher for

cross-NUMA)

 𝐵𝑊𝑘 : NIC bandwidth

 𝛽0,𝑘 , 𝛽1,𝑘: Prediction parameters

Pre-transfer

◎Calculate 𝐿𝑝𝑟𝑒𝑑

◎ Find the best NIC

◎Reserve inflight bytes 𝐼𝐹𝑘

Post-transfer

◎Return inflight bytes 𝐼𝐹𝑘

◎Measure latency

◎Update 𝛽0,𝑘 , 𝛽1,𝑘 using EWMA

(make estimation more accurate)

Cross-Process Fairness

 How to avoid any single process from saturating NICs?

 Coarse-grained quota allocation

 Decentralized, shared-memory implementation

 Not every scheduling task enters the global level

Interval: ~tens of milliseconds

 Tolerant shutdown/crashes of any process
2025/11/30 48

Local NIC
Scheduler

NIC1

NIC2

...

NIC8

/dev/shm/mooncake

L
o
c
k

M
a
n
a
g
e
r

Local NIC
Scheduler

Local NIC
Scheduler

Features of Mooncake TENT

Dynamic Orchestration

◎Unified Segment Abstraction

◎Application-Oblivious Topology
Discovery

◎Dynamic Per-Request
Orchestration

Adaptive Slice Spraying

 Latency Prediction based NIC
Selection

◎Cross-Process Fairness

Resilient Self-Healing

◎ Link-Level Resilience

◎ Transport-Level Resilience

Proactive Dual-Layer Resilience

 RDMA Resource Lifecycle

 Endpoint == NIC-to-NIC connection
QP

EP: NIC 1 – Proc 2 NIC 1

QP QP
QP

EP: NIC 3 – Proc 2 NIC 3

QP QPQP QP
QP

EP: NIC 2 – Proc 2 NIC 2

QP QP READY

N
IC

1

N
IC

2

N
IC

4

N
IC

3

N
IC

1

N
IC

2

N
IC

4

N
IC

3

RDMA Switches

Process 1 Process 2
Link-Level Resilience

◎Detect failed/unstable link:
PAUSE, CLOSE or TERMINATE

◎Allow suboptimal path

Proactive Dual-Layer Resilience

 Transport-Level Resilience

 Transparent fallback to other

transports

(e.g., RDMA→TCP)

 Driven by Dynamic Per-Request

Orchestration

 Recovery

 Transport/path will be reused after

link recovery

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

RDMA Switches

Process 1 Process 2

TCP link(s)

Evaluation

 Test Cluster: NVIDIA H800 Platform

 Each node is equipped with two Intel Xeon Platinum 8468V CPUs and eight NVIDIA
H800 GPUs

 NVLink & 200 Gbps × 8 RoCE interconnect

 Competitors

 Mooncake TENT

 Mooncake TE (mainstream version)

 NVIDIA NIXL (UCX backend)

Evaluation

 Synthetic Workload

 Block size range from

4KB to 64MB

 Two concurrent

threads, 8 NICs are

fully utilized

2025/11/30 53

Evaluation

 KVCache Transfer Benchmark

 Workload: DeepSeek-R1-W8A8 model with a 4K input

 Comprises 61 layers, each containing 32 blocks of 144 KB, consisting of a 128 KB

NoPE block and a 16 KB RoPE block

2025/11/30 54

Evaluation

 Case Study: Moonshot AI Checkpoint Engine

 Open source with Kimi K2

 Update model weights in LLM

inference engines

 Update time ∝ transfer latency

3 Motivation for Local Heterogeneous LLM Serving

Background and Observation of LLM and Sparse Mixture-of-Experts (MoE)

GPU + CPU

Attention + MoE

Background: Sparsification Trends in LLMs

2 out of top 10 open-source models are MoE All top 10 open-source models are MoE

Background: Sparse Mixture-of-Experts (MoE)

Transformer Architecture

Dense FFN → Sparse Mixture-of-Experts（MoE）

One large

matrix

Hundreds of

small matrices

Activate only

6~8 at a time+

Background: New Challenge in local deployment

As model sizes grow, traditional GPU-only solutions demand increasingly expensive hardware.

1 x RTX 4090

4 x A100

8 x H20

Observation: CPU DRAM is More Suitable for Sparse Models

A100 Xeon SPR + 8 * DDR5-4800

Hardware

Spec
80GB VRAM，2 TBps

> $ 15,000

8*64GB DRAM，8*40GB/s

~ $ 8,000

Bandwidth

Cost
$ 7.5 per GBps $ 25 per GBps

Capacity

Cost
$ 187 per GB $ 15.6 per GB

<

>>

The price numbers are not accurate, just a demonstration!

Well Suited

for Sparsity

KTransformers: Arithmetic Intensity-Aware Offloading Strategy

~ 5B for 128K Context ~17B ~654B

MLA Attention Norm & Linear &

Shared Experts
Routed ExpertsOperator

Total Size

Arithmetic

Intensity
High Medium Low

Offloaded to CPUsOn a Single GPU

Offload Priority：

Routed Experts

>

Shared Experts

>

MLA Attention

4 Core Technologies of KTransformers

Overall KT-System and Optimize in Prefill & Decode

KTransformers: Challenges and Key Solutions

Prefill

Latency of CPU/GPU Coordination

Poor CPU/GPU Overlap

CUDA Graph

Numa-aware Tensor Parallel

Expert Deferral

CPU is the Bottleneck for

Intense Computation

Advanced CPU Instructions:

Intel AMX

Decode

Challenges

Solutions

Prefill: Intel Advanced Matrix Extensions (Intel AMX)

AMX is 8x faster than AVX-512
How AVX-512 solves INT8 matrix multiplication problems

+= *

1 1
64

1 64 1

+= *

16
64

16 64

How AMX solves INT8 matrix multiplication problems

16

16

128OPS/cycle/FMA. 256OPS/cycle/core

32768OPS/16cycle/core. 2048OPS/cycle/core

Prefill: AMX Tiling-aware GEMM Kernel

Carefully designed memory layouts and cache-optimized kernels. BF16 GEMM Throughput (Single Xeon4 CPU).

INT8/INT4 GEMM Throughput (Single Xeon4 CPU).

Over 20

TFLOPS

Over 37

TOPS

Prefill: End-to-end Performance

Up to 19.74× faster than Llama.cpp (which does not use AMX kernel)

Up to 5.88× faster than Fiddler (which uses Torch’s native AMX kernel, sub-optimal)

Decode: CUDA Graph

Challenge: Inefficient CPU-GPU coordination

Fiddler/Llama.cpp forward (a single token) requires

~7000/3000 CUDA kernels, with launch time

taking 73%/21% of total.

Solution: CUDA Graph

Capture the full forward in a CUDA Graph to

remove launch overhead, while carefully avoiding

CPU-based operations that introduce breakpoints.

Decode: Numa-aware Tensor Parallel

Challenge: Inefficient CPU-CPU coordination

Modern systems span multiple NUMA nodes, cross-NUMA

memory access has worse latency/bandwidth.

Solution: Numa-aware Tensor Parallel

Place expert weight slices in the local memory of

each NUMA node so that memory access is mostly

local, avoiding expensive cross-NUMA memory traffic.

Decode: Expert Deferral Mechanism

CPU and GPU work alternately CPU and GPU work concurrently

CPU busy

CPU busy

CPU idle

CPU process

experts a, b

CPU process

experts a, b

CPU continue

with experts c, d

Decode: Determining the Number of Deferred Experts

Concern 1: Decoding Speedup Concern 2: Model Accuracy Drop

Balanced Configuration:

defer as few experts as needed to saturate the CPU,

while keep at least 2 non-deferred experts per layer to

protect model accuracy.

Decode: End-to-end Performance

Full-accuracy implementation is up to 1.92× faster than Llama.cpp and up to 4.09× faster than Fiddler.

Expert Deferral provides up to 1.45× additional speedups.

Exploratory Open-Source Framework Widely Used

Jul. 2024. First open release. DeepSeek-V2

with Single GPU + 136GB DRAM

Feb. 2025. DeepSeek-V3/R1 with

Single GPU + 382GB DRAM

Apr. 2025. Support multiple batch size.Aug. 2024. Support 1M-level long context.

(a) Flexible Framework (b) Top 0.01% on Github

15 K

Github Stars

May. 2025. Release

AMX-based CPU kernel.

Oct. 2025. Integrating into

Future. Integrating more features.

Supporting more hardware and models.

(c) Various models and hardware supported

Open Source: KTransformers High-performance Heterogeneous Inference System

Release Partner of Qwen and Kimi K2 – SOTA Open Source LLMs

Future: Sparse Attention

Transformer Architecture

Dense Attention→ Sparse Attention

Full

Attention

Hundreds of

small chunks

Scan only a

few at a time+

More Open Source Integration

You will be able to fine-tuning and inference 671B DeepSeek

and 1TB Kimi K2 locally with consumer GPUs + server CPUs!

FineTuning – Integrated into LLaMA-Factory for local fine-tuning

https://github.com/hiyouga/LLaMA-Factory/issues/9266

Inference – Integrated into SGLang for wider model support and multi-GPU acceleration

https://github.com/sgl-project/sglang/issues/11425

Thanks!

https://github.com/kvcache-ai

