

Digital Twin Junior:

a Comprehensive Portfolio of Al-driven Network Intelligence Tools

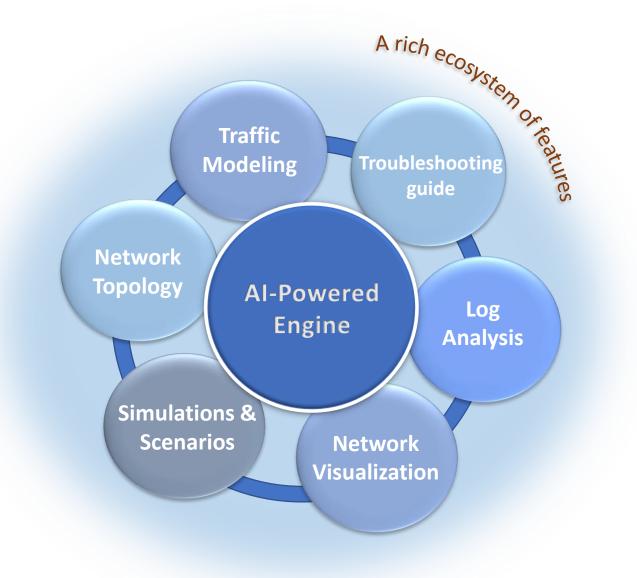
Included capabilities:

Network simulation and scenario modeling

Traffic Modeling: analysis and forecasting

Network Topology mapping and diagnostics

✓ Automated log interpretation



Digital Twin Junior:

Log Analysis and Interactive Troubleshooting

Log entry explanation

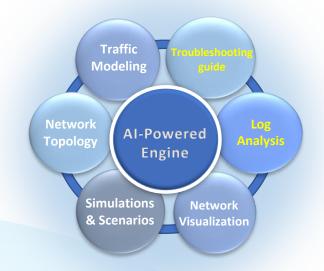
2019-06-12T10:20:30.000Z WARNING
PKJ/4/HTTP_GET_CRL_ERR: file_name:[test.crl] Manually
obtaining CRL [test.crl] through HTTP failed (Reason=[URL
resolution failed]). category=PKI subCategory=CRL
component=HTTP,
eventID=HTTP_GET_CRL_ERR,vendor=Huawei,product=Fat
AP,version=V200R022C00, timestamp: [2019-06-12 10:20:30] |
rid:T6zHJ38AAAEAAAO2BCWAAAMIK

2019-06-13T11:21:31.000Z WARNING
PKI/4/HTTP_GET_CRL_ERR: file_name:[test1.crl] Manually
obtaining CRL [test1.crl] through HTTP failed (Reason: Failed to
save the response message). category=PKI subCategory=CRL
eventID=HTTP_GET_CRL_ERR,vendor=Huawei,product=Fat
AP,version=V200R022C00, timestamp: [2019-06-13 11:21:31] [
rid:T6zHJ38AAAEAAAO2BCWAAAMK
ip:[192.158.1.39]:1813/UDP

Alarm Description:

After receiving a Hello packet from a neighbor, the device records information about the neighbor and starts a timer for the neighbor. If the device does not receive any Hello packet from the PIM neighbor before the timer expires, the device reports a trap.

Log Name	Describes the log name)	hwPimNeighborLo s
Nbrintindex	Index of the interface where the neighbor resides	2
NbrUpTime	Time when a neighbor relationship is established	2020-12-12 10:20:30



Recommendation for a solution

- 1. Check whether the reset msdp peer command is run in the user view on the peer device.
 - If is performed, wait until the peer is re-established.
 - If not, go to Step 2.
- Run the display this command in the MSDP view of the peer device to check whether an MSDP peer is configured.
 - If yes, go to step 3.
- If no, run the peer connect-interface <interface-type> <interface-number> command in the MSDP view to configure an MSDP peer.
- 3. Run the display interface brief command to check whether the shutdown command is configured on the peer interface.
 - If so, run the undo shutdown command in the interface view to clear the alarm.
 - If no, go to step 4.
- 4. Collect alarm and configuration information, and contact technical support personnel.

Key abilities of the network assistant

ip:[192.158.1.38]:1813/UDP

- Analyze and explain network events
- Identify causes
- Suggest solutions
- Resolve alarms
- ✓ Summarize incidents

Summary of the incident

The root cause of hwPimNeighborLoss was investigated. Here are the main findings: Step 1: Ping/Ping IPv6 command outcome: broken (link

between neighbors is not normal)
Step 2: Display interface brief/Display IPv6 interface brief
command outcome: no, mistake (link is normal)

Step 3: Display IP routing-table/Display IPv6 routing-table command outcome: seems ok

Conclusion: The problem was not solved.

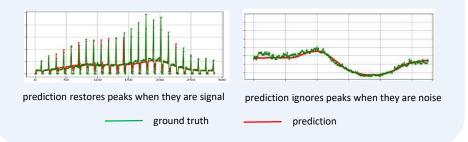
Interactive step-by-step procedure following

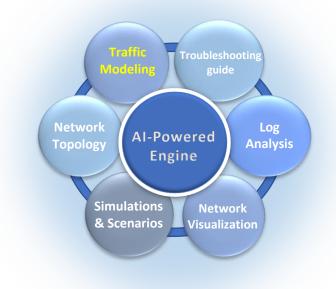
- Identify API call
- Extract arguments
- Execute
- > Get output

Digital Twin Junior: Traffic Modeling

Forecasting

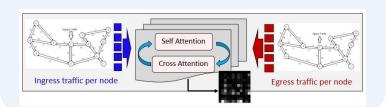
- → Horizon from very short(1 min) to very long (1 day)
- Predict peaks & 'quite periods' –
 be prepared for overloading and energy saving time
- Unstable signal (e.g. hardly responding cell towers) –
 no problem, prediction is based on neighborhood data
- Holidays and other key events we learn and predict even unusual traffic patterns
- Different topologies known or unknown





Estimation

- Traffic Matrix from link loads: Route-Aware GNN
- Traffic Matrix from Ingress/Egress Traffic:
 Attention-based GNN (Deep Gravity)



Completion

Completion in Time

- 'Estimate the present' fill in the missing values (traffic imputation)
- 'Predict the future' almost without knowing the past (with up to 80% of the historical data missing)

Completion in Space

Traffic Inversion for sampled traffic in network monitoring tools

Key techniques: Attention-based Graph
Convolutional Neural Networks

Can be applied to: Backbone networks, Campus network, Datacenter networks

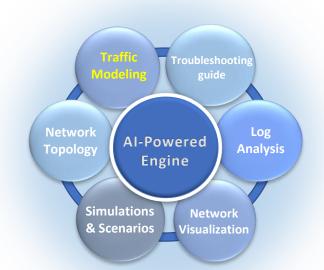
Digital Twin Junior: Traffic Inversion

Network monitoring

As networks evolve and become more complex, the need for network monitoring tools has remained constant.

It is highly important to ensure the network sustainability and guarantee all the processes to run smoothly and error-free for users.

Network traffic monitoring contains tools for data collection, analysis, diagnosis and solutions to resolve problematic issues.



Network Traffic Collection

The collection of **full detailed traffic** data does not scale well with increasing network attributes, like size, link bandwidth, speed etc.

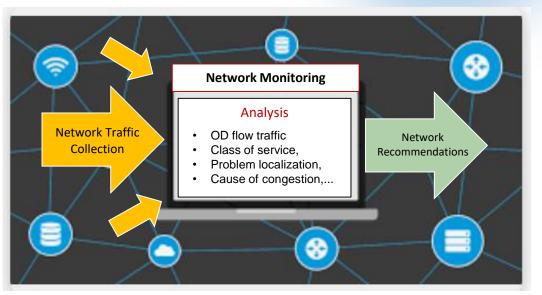
Network Traffic Sampling

- · The load on the measurement infrastructure is reduced.
- Problems: Only a portion of the traffic is exported. Some flows can be missed or represented by a very small portion. Sampled flows may not provide a sufficient amount of information about full network traffic

Network Traffic Inversion

Flow inversion is a restoration of the full traffic data or its statistics.

Existing approaches cannot restore the actual fine-grained traffic with good accuracy.



Some standards:

External products:

- NetFlow
- sFlow
- IPFIX

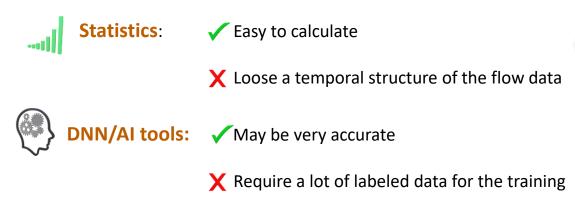
Huawei product:

 NetStream (our main use case):

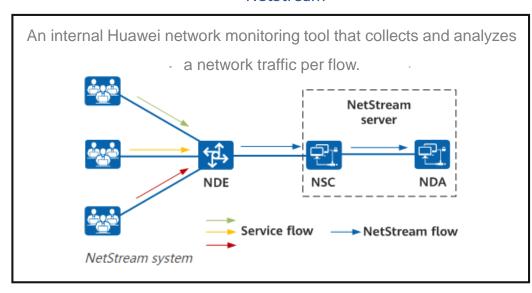
Full fine-grained traffic inversion

- In most cases sampling is inevitable...
- How to obtain a full information from sampled data?

Let's consider 2 possibilities:

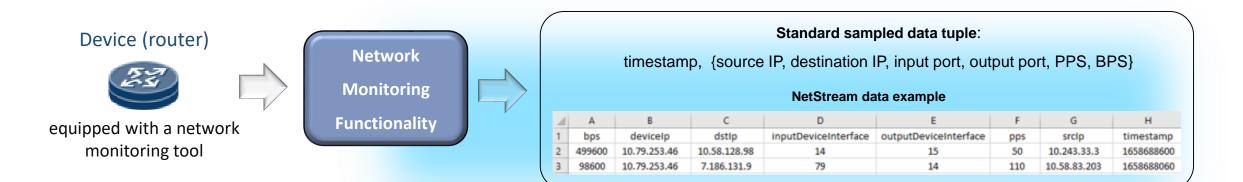


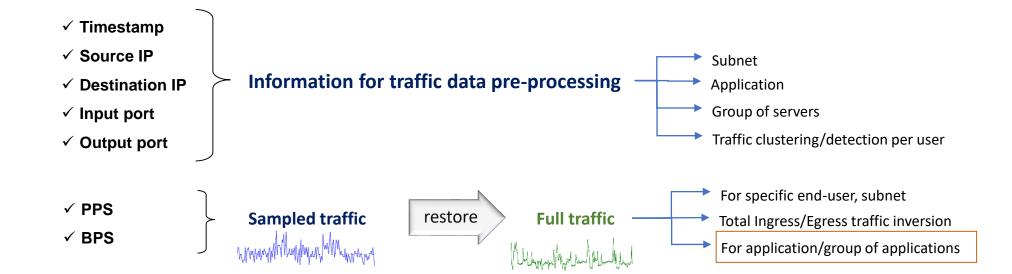
NetStream



Full flows are not directly available from NetStream sampled data.

Input data





Full fine-grained traffic inversion

Data discussion:

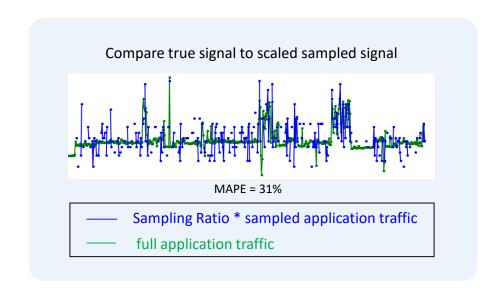
- Lots of observations are available from monitoring devices natural solution
- natural solution train DNN
- **Big problem**: our sampled data is not labeled (corresponding full traffic is not usually available)
- Literature suggests: incorporating knowledge of different noise and sampling patterns can significantly improve signal reconstruction
- So, to achieve accurate recovery, it is crucial to replicate the sampling procedure used by the monitoring device
- Why not to just multiply by sampling ratio? Even if total traffic is sampled deterministically (our use case) by inspecting every *Rth* packet, it would be generally inaccurate to assume that also every *Rth* application packet is considered

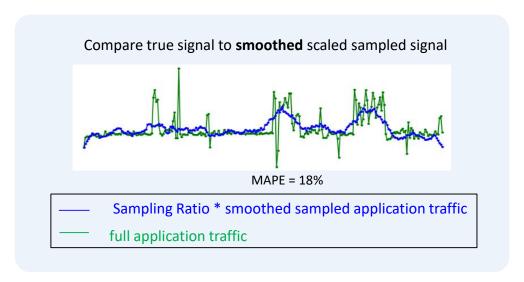
Our algorithm highlights

- Estimates an actual time-dependent fine-grained traffic with low error
- ✓ Combines statistical approach with recent AI techniques:
 - Is data-driven and Al-based: it reflects the actual data features
 - Doesn't require labeled data
 - Can be automatically adapted to a new data
- ✓ Is implemented as a lightweight and efficient deep neural network

Simple statistical manipulations

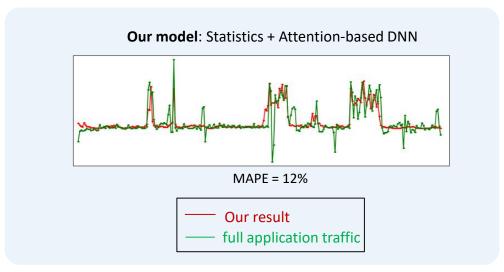
Assumption: if sampling ratio is know, we can scale back the sampled signal and obtain a good solution





Simple statistics are not enough:

- ✓ Good average fit for a large time period
- **X** Poor local fit per timestamp (either too noisy or oversmoothed)



Train data modeling

Definitions:

R - sampling ratio

n - sampled number of packets

N - total number of packets

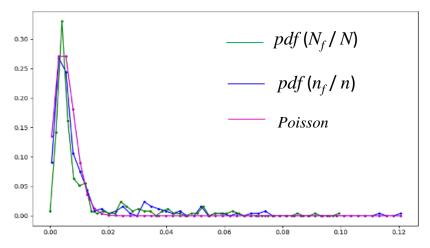
 n_f - sampled number of flow packets (per application per user)

 N_f - total number of flow packets

(traffic is aggregated)

Empirical result as a base for the sampling principle: $pdf(n_f/n) = pdf(N_f/N)$

 $N_f \ll N$, hence the 'the law of small numbers' (Poisson) is straightforward to apply

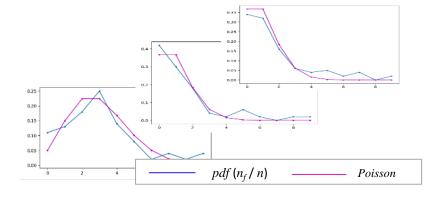


 $pdf(n_f/n) \sim pdf(N_f/N) \sim Poisson distribution$

Approach:

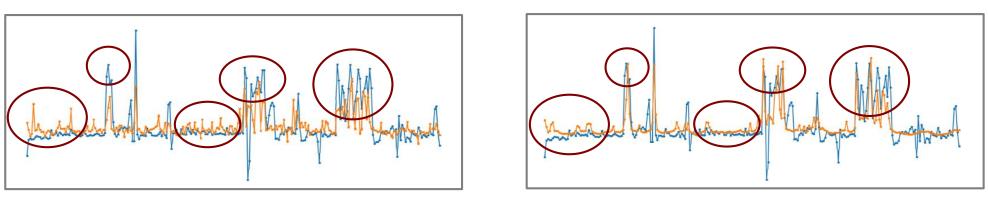
- Extract and apply a noise scheme/sampling to NetStream data to create a 'noisier' signal.
- Train a network to restore a noise signal from 'noisier' signal

Generated train data: inputs = $n_f^{sampled}$, labels = $n_f^{original}$



Spoiler: Why Poisson data modeling is better

Restored traffic (orange) vs ground truth traffic (blue)



(a) with random sampling

(b) with Poisson sampling

Conclusion: Although the network trained on double-sampled data, that underwent random sampling (instead of Poisson one) succeeded to restore the overall pattern, its result is much noisier and some important peaks are missed or underestimated

Model structure

Network MONITORING TOOL

(e.g. NETSTREAM)

Original monitored traffic

Train data modeling

Training phase

Modified monitored traffic

Attention based DNN

- Training mode -

Restored monitored traffic

Statistics based module

Functionality: Apply sampling principle to create double-sampled data

Details: Extract traffic segments (pps, bps) and apply sampling principle

If sampling principle is known

- Calculate statistics of the extracted application traffic
- Generate train data based on calculated statistics

If sampling principle is unknown:

 Apply general sampling procedure (based on random noise) to generate train data

DNN based module

Functionality: Train a NN to restore full data from sampled data

Details:

- Sequence-to-sequence Encoder-Decoder scheme
- Convolution + Attention mechanism
- Double-loss scheme:
- estimation loss makes the output close to the provided label
- self-loss with high drop out serves as a regularization term

Lightweight: small number of parameters, can be trained on CPU

Inference phase

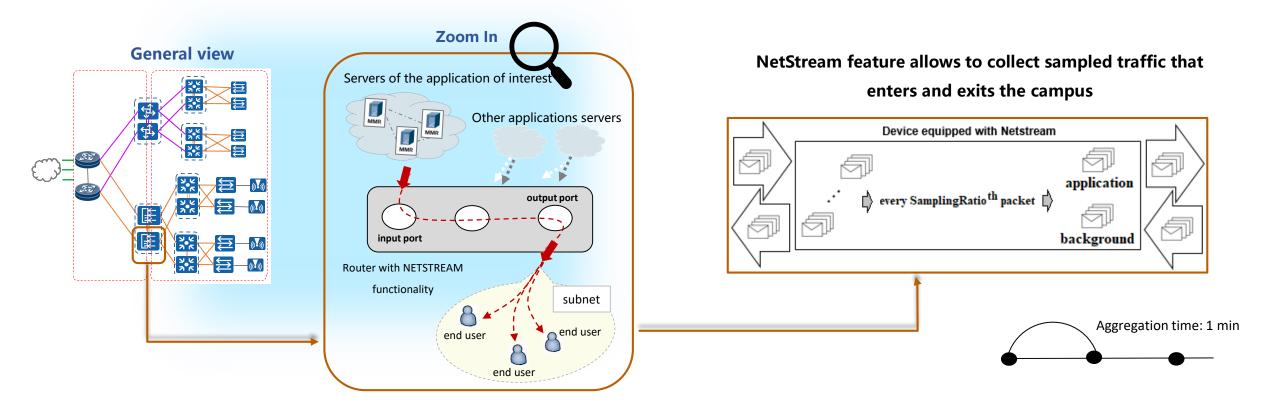
Original monitored traffic

Attention based DNN

- Inference mode -

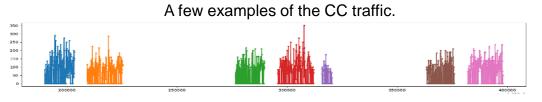
Use case: Campus Network

Real campus network with 2 routers equipped with NetStream feature are mounted on top of the campus network



Requirement:

To reconstruct the complete traffic generated by a Conference Call (CC) application on a per-user basis



Each color denotes a separate conference call PPS along the time axis

Conference Call traffic inversion

Training

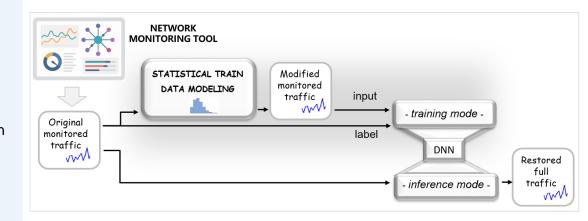
Sampled data: NetStream measurements contained 19 large batches, each batch including both CC and background traffic samples from about 5-7 days of records

Data preparation

- 1) Define input CC traffic by identifying CC server IP ('source IP' from data tuple)
- Extract CC PPS and BPS segments corresponding to various users (users = different 'destination IP' from data tuple)

Model training

- 1) Use extracted CC segments as inputs to the model
- 2) Train model



Verification

Sampled data: NetStream measurements.

Ground truth: a few samples with total duration of 1,584 min of full fine grained CC traffic records

(obtained with Wireshark).

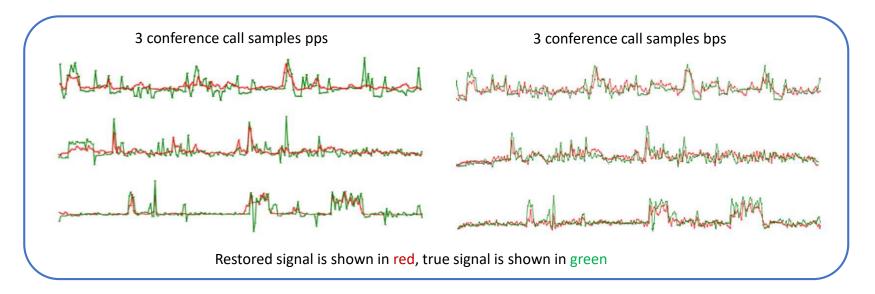
Mean Absolute Percentage Error

$$MAPE = \frac{100\%}{n} \sum \frac{|True(t) - Estimation(t)|}{|True(t)|}$$

Symmetric Mean Absolute Percentage Error

$$SMAPE = \frac{100\%}{n} \sum \frac{|True(t) - Estimation(t)|}{0.5 * |True(t) + Estimation(t)|}$$

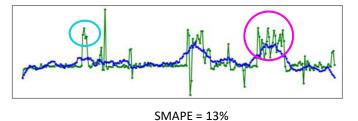
Evaluation and results

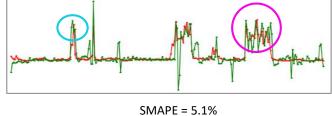


Method	MAPE (pps)	SMAPE (pps)	SMAPE (bps)
Upscaling (unsmoothed)	31.4%	14.0%	33.8%
Upscaling (smoothed)	18.0%	11.5%	27.3%
Our method (DNN + stats)	11.7%	5.6%	13.1%

Visual comparison of the statistics-based method (blue) and our method (red) to the ground truth (green).

Statistical results hardly restore peaks (cyan circles) and over smooth the data (magenta circles)

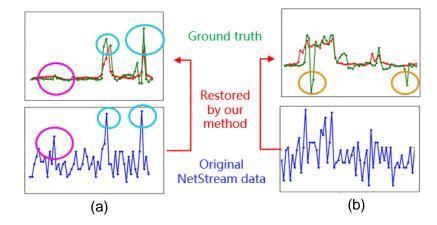




Summary and Discussion

Developed a self-supervised algorithm to restore full traffic data from highly sampled traffic measurements

- No labeled training data required
- Low cost (adjustable number of parameters, can be trained on CPU, short inference time
- Efficient & Accurate



- (a) Method restores true peaks (cyan circles) and ignores irrelevant sampled peaks (magenta circle)
- (b) <u>Limitations</u>: Low values are not presented in NetStream data and cannot be restored (yellow circles)

General applicability: Due to the standard input the product can be applied to the data collected by other vendors tools (like NetFlow)

Additional benefits and suggestions

- Cost reduction: A trade-off between sampling ratio and inversion accuracy can be found.
- > Optimization: Internal parameters (aging cache etc.) can be fine-tuned with respect to the desired accuracy.

